Il noto scienziato dai natali ai piedi caciosi della Calvana ha infatti:
-fornito la formula generica per il calcolo dei quadrilateri osservabili in una griglia nxn.
-dimostrato la fondatezza della corrispondenza tra numero di quadrilateri osservabili in una griglia nxn e il quadrato del numero triangolare corrispondente per posizione nella rispettiva successione.
Ecco il documento fornito dall'illustre:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEilI_emtKA2TK2sngqFLnA9jvVhKa_aA_gjIfugNguYFmI6IWSViCR9NOx4rXhhqRyDT70U-hQGlmM-aGW7H7rUw9qlUMHsEQo91gD048mLc8_tcOSyL2sSAMRPVlACnf3-qChS/s200/zumba.jpg)
Ovviamente, se in matematica siete scarsi come me, potete sempre prendere il numero n della griglia (ad esempio 7 per una griglia di 7x7), fiondarvi a trovare il corrispondente numero triangolare nella lista (il settimo è 28) e quindi elevarlo alla seconda (28x28 = 784) ottenendo così il numero dei quadrilateri osservabili nella griglia... oppure mettetevi a contarli :D
Se grazie a come se fosse antani vincete ai quiz televisivi, scommesse da bar, o trovate altre applicazioni segnalatecelo, fate della beneficenza e iscrivetevi a un corso di Zumba.
1 commento:
ragazzi non vedevo una sommatori dall'ultimo esame dato all'universita', cioe' 10 anni fa 10 !!!!!!!!!!!!!!!!
Posta un commento